
Using c++0x and the STL

Pedro Montuenga

University of Illinois at Urbana-Champaign

montuen2@illinois.edu

SpinFest 2014, PHENIX

July 23, 2014

Introduction

c++11/14 is the latest version of the c++ standard

The latest version of gcc at rcas is 4.4.7, which supports c++0x.

This talk will focus on new functionality that is available by simply adding:
AM_CXXFLAGS= -Wall -Werror -std=c++0x to your Makefile.am or
equivalent.

Many features of c++11 can be used via boost libraries. Although, this will
not be the focus of this talk.

If unspecified, all novel objects are part of std namespace.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 2 / 21

auto keyword

Deduces data type from initialization:

int main()

{

auto a = 1 + 2; // int

auto b = 1.2 + 1; // double

vector <pair <double , myClass >> vp;

[...]

// vector <pair <double , myClass >>:: iterator

auto it_vp = vp.begin ();

}

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 3 / 21

Smart Pointers
Motivation

int someFunction () {

// Allocate new object that must be deleted

TGraph *pg = new TGraph(arguments);

[...]

if ([...]) // function must return early

{

delete pg;

return 1;

}

[...]

delete pg;

return 0;

}

Smart Pointers manage memory for you.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 4 / 21

Smart Pointers
Solution

int someFunction () {

// New declaration

unique_ptr <TGraph > pg(new TGraph(arguments));

[...]

if ([...]) // function must be exited early

{

// no need to delete

return 1;

}

[...]

// no need to delete

return 0;

}

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 5 / 21

unique ptr

By far the most common smart pointer.

It takes as much memory as a raw pointer.

It deletes the object after it goes out of scope.

{

unique_ptr <TClass > pc(new TClass(arguments));

[...]

return 0;

} // pc out of scope , TClass object deleted

It ensures that one and only one smart pointer refers to TClass instance.

unique_ptr <TClass > pc(new TClass(arguments));

unique_ptr <TClass > pc2 = pc; // compiler error!

unique ptr overloads operator*(), i.e., it can be dereferenced just like
normal pointers.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 6 / 21

shared ptr

Keeps a reference count of how many pointers are referencing the object.

After count goes to zero, it deletes the object

{

shared_ptr <TClass > pc(new TClass(arguments));

{

// ref count increases by 1

shared_ptr <TClass > pc2 = pc;

} //pc2 destroyed , ref count decreases by 1

} // ref count now zero , object destroyed

The only choice when making vectors of pointers, as STL containers cannot
hold unique ptrs

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 7 / 21

Problem: What about custom delete?

int someFunction () {

unique_ptr <TFile > pg(new TFile(arguments));

[...]

if ([...]) // function must be exited early

{

// forgot to call pg ->Close ();

return 1;

}

[...]

// forgot to call pg ->Close ();

return 0;

}

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 8 / 21

Custom Delete functors
Both unique ptr and shared ptr support custom delete functions

struct delFile1
{

void operator ()(TFile *pf) const
{

pf->Close ();
delete pf;

}
};

struct delFile2
{

void operator ()(TFile *pf) const
{

pf->Close(‘‘r’’);
delete pf;

}
};

void someFunction () {
unique_ptr <TFile , delFile1 > upf1(new TFile(arguments));
unique_ptr <TFile , delFile2 > upf2(new TFile(arguments));

shared_ptr <TFile > spf(new TFile(arguments), delFile1);
}

void functions are also possible, although functors give better performance and are easier to use

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 9 / 21

Smart Pointers
Sumary

When allocating objects dinamically (i.e., new), use smart pointers instead of
raw pointers.

Use unique ptr for exclusive ownership.

Use shared ptr for shared ownership.

For containers of pointers, only shared ptr is legal.

Further Reading: weak ptrs, RAII.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 10 / 21

Algorithms with the STL

The Standard Template Library (STL) is especially designed for
high-performance algorithm implementation.

It comprises:

1 Containers: vector,map, set, etc.
2 Iterators: Input, Output, Forward, Bidirectional, RandomAccess.
3 Algorithms: sorting, partition, find, for each, etc.
4 Functionals: For algorithms with user-defined data-types.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 11 / 21

Sequence Containers - std::vector

std::vector is a dinamically allocated array.

It holds a variable number of objects (size())

When size()== capacity() a new array with 2 x (capacity()) is allocated
and the old objects are copied to the new array. Making insertion amortisized
constant time.

Other sequence containers include deque, stack, queue, string.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 12 / 21

Vectors vs Arrays

vectors resize when needed.

vectors support begin(), end(), size() and capacity().

vectors check bounds.

vector <int > v; // []

v.push_back (5); // [5]

v.push_back (6); // [5 6]

v.at(0) = 4; // [4 6]

v.at(2) = 3; // ERROR , failed range_check!

Elements can be accessed via operator[].

cout << v[1] << endl; // OK , prints ’6’

cout << v[2] << endl; // ERROR , segmentation fault

Easy to pass as arrays:

function (&v[0]);

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 13 / 21

Algorithms on vectors

The STL supports both general and container-specific algorithm
implementations with performance guarantees
Examples:

vector <double > v;

[...]

// sorts in increasing order

vector ::sort(v.begin(), v.end ());

// returns pointer to first element from

// left to right equivalent to 5.3

find(v.begin(), v.end(), 5.3);

On sorted arrays:

// whether element exists

cout << binary_search(v.begin(), v.end ()) << endl;

// returns pair <vector <double >:: iterator ,

// vector <double >:: iterator >

// to first and last incidence

auto bounds = equal_range(v.begin(), v.end(), 5.3);
Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 14 / 21

Algorithms with classes
Motivation

class Point{

private:

float x, y;

public:

float GetX ();

float GetY ();

};

int main (){

vector <Point > vP;

[...]

}

What is the mean y value?

What if we want to sort in increasing order in x?

How about testing a predicate on Points such as distance to a given point?

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 15 / 21

std::bind
Example I: obtain mean y value

float addY(float x, Point p) {return x + p.GetY (); }

int main (){

vector <Point > vP;

[...]

// get mean y value

m_y = accumulate(vP.begin(), vP.end(), 0.0, addY)

/ vP.size ();

}

Alternatively we can do it in one line without writing outside functions:

m_y = accumulate(vP.begin(), vP.end(), 0.0,

bind(plus <float >(), _1 , bind(& Point::GetY , _2)))

/ vP.size ();

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 16 / 21

std::bind
Introduction

std::bind returns a function object, it can bind an arbitrary number of
placeholders (1, 2, 3, . . .).

int Add(int a, int b);

int main() {

auto fAdd = bind(&Add , _1 , _2);

cout << fAdd(3, 5) << endl; // prints out 8

auto AddTwo = bind(&Add , 2, _1);

cout << AddTwo (5) << endl; // prints out 7

auto AddSevenAndTen = bind(&Add , 7, 10);

cout << AddSevenAndTen () << endl; // 17

[...]

}

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 17 / 21

std::bind
More Examples

Sort in decreasing order of x:

sort(vP.begin(), vP.end(),

bind(greater <int >(),

bind(& Point:GetX , _1),

bind(& Point:GetX , _2)

)

)

Test whether points are more than distance d=5.0 away from (1.5,2.5)

float distance(float x0, float y0,

float currX , float currY){

return sqrt(pow(currX - x0 , 2)

+ pow(currY - y0, 2));

};

partition(vP.begin(), vP.end(),

bind(less <float >(),

bind(distance , 1.5, 2.5, _1 , _2), 5.0));

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 18 / 21

std::bind
More Examples

{
TH1F x_histo(arguments);
TH1F y_histo(arguments);

vector <Point > vP;
[...]
// In every iteration calls TH1F.Fill(x)
for_each(vP.begin(), vP.end(),

bind(&TH1F::Fill , x_histo ,
bind(&Point::GetX(), _1)));

// Get y distribution for the percentile 90 of x values

sort(vP.begin(), vP.end(),
bind(less <float >(),

bind(& Point::GetX , _1)
bind(& Point::GetX , _2)));

auto new_begin = vP.begin() + (vP.size() * 9 / 10);

for_each(new_begin , nP.end(),
bind(&TH1F::Fill , y_histo ,

bind(&Point::GetY(), _1)));
}

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 19 / 21

STL Algorithms
Summary

The STL offers close to optimal performance.

Prefer STL algorithms to their for-loop counterparts

vector <int > v;

[...]

// find integer 2

auto first = find(v.begin(), v.end(), 2);

// using for -loop

vector <int >:: iterator first;

for(auto it = v.begin(), it != v.end(), ++it){

if(*it == 2){

first = it;

break;

}

}

Further reading: functionals, std::lambda.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 20 / 21

Table of contents

1 Introduction

2 auto keyword

3 Smart Pointers

4 Algorithms with the STL

5 std::bind

References:

Effective c++

Effective STL

EFMC++

Accelerated c++

Other online resources

Thank you!

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 21 / 21

Associative Containers - std::map and std::set

std::map and std::set are permanently sorted containers.

They are implemented in terms of a balanced (red-black) tree.

std::map is a dictionary (key-value pair), std::set stores only values.

Other containers include multiset, multimap, unordered set, unordered map,
unordered multiset, unordered multimap.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 22 / 21

Iterators

Every STL container comes with its own iterator.

All STL iterators have the capacity to:

1 Move forward
2 pointers to the first (begin()) and last (end()) iterator.

Therefore, all STL containers can operate on every element between two
given iterators.

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 23 / 21

STL Algorithms:

Pedro Montuenga (UIUC) c++0x and the STL July 23, 2014 24 / 21

	Introduction
	auto keyword
	Smart Pointers
	Algorithms with the STL
	std::bind

